Evaluating the bias of circRNA predictions from total RNA-Seq data

نویسندگان

  • Jinzeng Wang
  • Kang Liu
  • Ya Liu
  • Qi Lv
  • Fan Zhang
  • Haiyun Wang
چکیده

CircRNAs are a group of endogenous noncoding RNAs. The quickly developing high throughput RNA sequencing technologies along with novel bioinformatics approaches have enabled researchers to systematically identify circRNAs and their biological functions in cells. Deep sequencing of rRNA-depleted RNAs treated with RNase R, which digests linear RNAs and leaves circRNAs enriched, is an efficient way to identify circRNAs. However, very few of RNase R treated data are at hand but a large amount of total RNA-Seq data with no sequencing costs is available, for circRNA predictions. In this study, we systematically investigated the prediction bias from total RNA-Seq data as well as the influence of sequencing depth, sequencing quality and single-end or paired-end sequencing strategy on the predictions. We also identified circRNA properties that may contribute to the improved prediction performance. Our analysis shows that circRNA predictions from total RNA-Seq data gain ∼50% true positive. Sequencing error dramatically worsens the predictions, rather than single-end sequencing strategy or low sequencing depth. However, false positive can be carefully controlled by using data with good quality and narrowing down circRNAs guided by their properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CircRNA accumulation in the aging mouse brain

Circular RNAs (circRNAs) are a newly appreciated class of RNAs expressed across diverse phyla. These enigmatic transcripts are most commonly generated by back-splicing events from exons of protein-coding genes. This results in highly stable RNAs due to the lack of free 5' and 3' ends. CircRNAs are enriched in neural tissues, suggesting that they might have neural functions. Here, we sought to d...

متن کامل

Quantifying circular RNA expression from RNA-seq data using model-based framework

Motivation Circular RNAs (circRNAs) are a class of non-coding RNAs that are widely expressed in various cell lines and tissues of many organisms. Although the exact function of many circRNAs is largely unknown, the cell type-and tissue-specific circRNA expression has implicated their crucial functions in many biological processes. Hence, the quantification of circRNA expression from high-throug...

متن کامل

Comprehensive analysis of circRNA expression profiles in humans by RAISE

Circular RNAs (circRNAs) are pervasively expressed circles of non‑coding RNAs. Even though many circRNAs have been reported in humans, their expression patterns and functions remain poorly understood. In this study, we employed a pipeline named RAISE to detect circRNAs in RNA‑seq data. RAISE can fully characterize circRNA structure and abundance. We evaluated inter-individual variations in circ...

متن کامل

Circular RNA profile in gliomas revealed by identification tool UROBORUS

Recent evidence suggests that many endogenous circular RNAs (circRNAs) may play roles in biological processes. However, the expression patterns and functions of circRNAs in human diseases are not well understood. Computationally identifying circRNAs from total RNA-seq data is a primary step in studying their expression pattern and biological roles. In this work, we have developed a computationa...

متن کامل

Circular RNAs and their associations with breast cancer subtypes

Circular RNAs (circRNAs) are highly stable forms of non-coding RNAs with diverse biological functions. They are implicated in modulation of gene expression thus affecting various cellular and disease processes. Based on existing bioinformatics approaches, we developed a comprehensive workflow called Circ-Seq to identify and report expressed circRNAs. Circ-Seq also provides informative genomic a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017